Non parametric Estimation of Probability Density Functions based on Ortbogonal Expansions
نویسندگان
چکیده
منابع مشابه
Eecient Non-parametric Estimation of Probability Density Functions
Accurate and fast estimation of probability density functions is crucial for satisfactory computational performance in many scientiic problems. When the type of density is known a priori, then the problem becomes statistical estimation of parameters from the observed values. In the non-parametric case, usual estimators make use of kernel functions. If X j ; j = 1; 2; : : : ; n is a sequence of ...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
Density estimation with non–parametric methods
One key issue in several astrophysical problems is the evaluation of the density probability function underlying an observational discrete data set. We here review two non-parametric density estimators which recently appeared in the astrophysical literature, namely the adaptive kernel density estimator and the Maximum Penalized Likelihood technique, and describe another method based on the wave...
متن کاملNon-parametric k-sample tests: Density functions vs distribution functions
In this paper we introduce some tests for the comparison of k samples based on kernel density estimators (KDE), and we develope the Double Minimum method as a new and useful procedure for the crucial problem of bandwidth selection. We study, via Monte Carlo simulations, the statistical power of the proposed tests, as well as the impact of the smoothing degree and the performance of the Double M...
متن کاملNon-parametric Estimation of Probability Distributions from Sampled Signals
This paper is concerned with the non-parametric estimation of probability distributions from band-limited and at least critically sampled signals such as images. Conventional approaches employing histograms or Parzen windows often perform unsatisfactorily since they ignore two important properties of such signals, namely that they are ordered and contain sufficient information to reconstruct th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Matemática Complutense
سال: 1989
ISSN: 1988-2807,1139-1138
DOI: 10.5209/rev_rema.1989.v2.n1.18146